
 M M CCCC 1 N N
 MM MM C C 11 NN N
 M M M M C 1 N N N
 M MM M C === 1 N N N
 M M C 1 N N N
 M M C C 1 N NN
 M M CCCC 1 N N

--

 M M AA N N U U AA L
 MM MM A A NN N U U A A L
 M M M AAAA N NN U U AAAA L
 M M A A N N UU A A LLLL

CHAPTER 1 UNPACKING AND SETUP

 1.1 UNPACKING YOUR MC-1N 3
 1.2 CONNECTIONS TO MC-1N 3
 1.2.1 Applying Power 3
 1.2.2 The terminal 4
 1.2.3 Reset Switch 6
 1.3 LET’S FIRE IT UP 7
 1.4 HOW TO GET HELP 7

CHAPTER 2 LANGUAGE SPECIFICATION

 2.1 GENERAL INFORMATION 8
 2.1.1 Design Considerations 8
 2.1.2 NSC Tiny BASIC’s Execution Modes 8
 2.1.3 Program Line Syntax 9
 2.1.4 The NSC Tiny BASIC EDITOR 10
 2.2 ELEMENTS OF A NSC TINY BASIC EXPRESSION 11
 2.2.1 Introduction 11
 2.2.2 Constants (also Referred To As DATA) 11
 2.2.2.1 Numbers 12
 2.2.2.2 Integers 13
 2.2.2.3 Bytes . 13
 2.2.2.4 Booleans 13
 2.2.2.5 Strings 14
 2.2.3 Variables 13
 2.2.4 Operators 16
 2.2.4.1 Arithmetic Operators 17
 2.2.4.2 Logical Operators 17
 2.2.4.3 Relational operators 18
 2.2.4.4 Complex expressions 18
 2.2.5 Functions 20
 2.2.5.1 The MODulo function 21
 2.2.5.2 The RaNDom function 21
 2.2.5.3 The STATus function 21
 2.2.5.4 The TOP OF PAGE FUNCTION 22
 2.2.5.5 The INCrement function 22
 2.2.5.6 The DECrement function 22
 2.3 STATEMENTS . 23
 2.3.1 CLEAR . 24
 2.3.2 DELAY . 25
 2.3.3 DO . 26
 2.3.4 FOR / TO / STEP 27
 2.3.5 GOSUB . 28
 2.3.6 GOTO / GO 29
 2.3.7 IF / THEN 30
 2.3.8 INPUT . 31
 2.3.9 LET . 32
 2.3.10 LINK . 33
 2.3.11 NEXT . 34
 2.3.12 ON . 35
 2.3.13 PRINT / PR 36
 2.3.14 REMark . 37
 2.3.15 RETURN . 38

 Page 2

 2.3.16 STOP . 39
 2.3.17 UNTIL . 40
 2.3.18 Multiple Statement Line 41
 2.4 COMMANDS . 42
 2.4.1 NEW . 42
 2.4.2 RUN . 42
 2.4.3 CONTinue . 43
 2.4.4 LIST . 43
 2.5 ERRORS AND INTERACTIVE DEBUGGING 44
 2.5.1 Errors . 44
 2.5.2 Interactive debugging 45
 2.6 PROGRAMMING NOTES 46
 2.6.1 Programs in PROM 46
 2.6.2 Execution speed vs. memory space 46
 2.6.2.1 Introduction 46
 2.6.2.2 Conserving Memory Space 46
 2.6.2.3 Improving execution time 47
 2.6.3 The nesting stack 47

CHAPTER 3 PRODUCT DESCRIPTION

 3.1 INTRODUCTION 48
 3.1.1 Bites and Bytes 48
 3.1.2 The memory address 50
 3.1.3 The hexadecimal number system 50
 3.1.4 The AND, OR, NOT OPERATORS 53
 3.1.5 MC-1N MEMORY ORGANIZATION 55
 3.2 PARALLEL I/O LINES 56
 3.2.1 Configuring the PPI 57
 3.2.2 PPI Outputting 57
 3.2.3 PPI Inputting 59
 3.3 ADDITIONAL I/O AND INTERRUPTS 60
 3.3.1 Inputs And Outputs Using STAT FUNCTION 60
 3.3.2 INTERRUPTS 61
 3.3.3 Status Register Bit Assignments 61
 3.3.3.1 Status Register Bit Definitions 61
 3.4 THE REAL TIME CLOCK/CALENDAR 63
 3.4.1 Initialization 63
 3.4.2 Setting the clock 64
 3.4.3 Starting the clock 65
 3.4.4 Reading the clock 65
 3.5 MC-1N OPTIONS AND CONFIGURATION 66
 3.6 APPLICATIONS 67

APPENDIX A APPENDIX

 A.1 ERROR CODE SUMMARY 68
 A.1.1 NSC Tiny BASIC Error Messages 68
 A.2 ASCII CODES 69
 A.3 LANGUAGE SUMMARY 70
 A.3.1 Command Summary 70
 A.3.2 Statement Summary 70
 A.3.3 Operator Summary 71

 Page 3

 A.3.4 Function Summary 71
 A.4 SYNTAX DIAGRAMS (GRAMMAR) 72

 ==
 ==
 ==
 == BASICON
 ==
 ==
 ==
 503-626-1012

NSC is a trademark of NATIONAL SEMICONDUCTOR CORP.

 - 1 -

 Preface
 Your BASICON Microcontroller (MC-1N) is a fully self-contained general
purpose programmable controller with CPU, RAM, ROM, Real Time Clock, I/O,
Communications Circuitry and "INS 8073 Tiny BASIC" on a 3 inch by 4 inch board.
Just apply +5Vdc and connect to a terminal and you are up and running.

 This document is organized in three chapters and an appendix:

 1. Unpacking and Setup.

 2. Language Specification.

 3. Product Description.

 4. Appendix.

 - 2 -

 CHAPTER 1

 UNPACKING AND SETUP

1.1 UNPACKING YOUR MC-1N

 Carefully unpack your order comparing the contents against the enclosed
packing list. If there are any discrepancies notify BASICON promptly

1.2 CONNECTIONS TO MC-1N

 There are two connectors on the MC-1N, J1 (10 pins) and J2 (26 pins). J1
is the power and communications connector. J2 is the Input/Output connector and
will be discussed in detail in chapter three. See section 3.5 page 66 for more
information.

1.2.1 Applying Power

 Connect a +5Vdc +/- 5% power source capable of delivering at least 200 mA
to pin 10 of J1. Connect the 5 volt return (or ground) to pin 9 of J1.

 SIGNAL PIN

 +5V >------------------------> 10

 GND >------------------------> 9

 POWER SUPPLY MC-1N CONNECTOR J1

 - 3 -

1.2.2 The terminal

 The MC-1N will connect to a wide variety of terminals through its RS-232
signal lines. A cable will need to be prepared to meet the connector and strap
options of your particular terminal. See section 3.5 page 66 for more
information.

 The RS-232 signals are present on J1 as follows:

 o Pin 1 is serial input to the MC-1N.

 o Pin 2 is the serial output from the MC-1N.

 o Pin 9 is the signal ground (system ground).

 For a simple terminal with RS-232 inputs only and no modem control lines,
the terminal cable would be as follows:

 SIGNAL PIN PIN

 TRANSMIT 2 <----------------------------------< 1

 RECIEVE 3 <----------------------------------< 2

 SIGNAL RETURN 7 <----------------------------------< 9
 |
 GROUND 1 <----

 TERMINAL CONNECTOR MC-1N CONNECTOR J1

 - 4 -

 Due to industry standards not being universally applied the same by all
manufacturers, you may find the subminiature ’D’ connectors on the back of your
terminal to be either male or female types. In addition, many terminals need
modem control signals applied to enable receiving or transmitting to occur. See
section 2.5 page 66 for more information. Therefore a cable to meet the above
requirements might look as follows:

 SIGNAL PIN PIN

 TRANSMIT 2 <----------------------------------< 1

 RECIEVE 3 <----------------------------------< 2

 SIGNAL RETURN 7 <----------------------------------< 9
 |
 GROUND 1 <----

 CA (RTS) 4 <----
 |
 CB (CTS) 5 <----

 CF (CDS) 8 <----
 |
 CD (DTR) 20 <----

 TERMINAL CONNECTOR MC-1N CONNECTOR J1

 - 5 -

1.2.3 Reset Switch

 Normally the MC-1N will reset on power-up but if you are doing controller
development you may find it more convenient to connect a reset switch which will
allow resetting the system without losing your program. See section 3.5 page
66 for more information.

 PIN

 6 >------------------
 |
 \ SW (Normally Open-Momentary Closed)
 |
 9 >------------------

 MC-1N CONNECTOR J1

 The system reset line is present on:

 o Pin 6 - Reset line (normally high)

 o Pin 9 - ground

 You’ve made connections to your terminal now your terminal must be
configured to communicate with the MC-1N.

 o RS-232 (or TTL) - Selected (current loop not supported)
 o Data Bits - 8
 o Parity - None
 o Stop Bits - 1 or 2 (MC-1N sends 1)
 o Duplex - Full
 o Baud Rate - 110, 300, 1200 or 4800

 The MC-1N can communicate at four different baud rates as indicated above.
Once you’ve chosen a baud rate set both the terminal and the MC-1N to the same
value.

 The baud rate on the MC-1N is selected by jumpers E4 and E5 as follows:

 BAUD RATE E4 E5

 110 OUT OUT
 300 OUT IN
 1200 IN OUT
 *4800 IN IN

* We have found that 4800 baud may cause stray characters to appear on some
terminals. Therefore, use it only after you are confident that your systems
operation is proper.

 - 6 -

1.3 LET’S FIRE IT UP

 After checking that all connections have been properly made, as described
above, apply power to the MC-1N. When the terminal has warmed up the symbol ">"
should appear in the first character position of the terminal screen. If a
character (or characters) other than a ">" appear the baud rates of the terminal
and MC-1N may not be the same. If the MC-1N is radiating excessive heat or
making noise or smoke there is a serious problem which will require attention
before the system will function properly. If nothing is happening recheck all
connections and if you are still having problems feel free to contact BASICON
for assistance.

 If a ">" appears on your terminal, press the return (or enter) key. Each
time the return key is pressed another ">" will appear below the previous one.
If the initial ">" appears each time the power is applied or the reset switch is
pressed, but a new ">" does not appear when the return key on the terminal is
pressed then check your wiring connections. The terminal is receiving data at
the correct baud rate, but the MC-1N is not receiving data from the terminal.

 If all has gone well to this point then it is time to try some BASIC
programming. The first thing to do is enter the command NEW #1100. This will
put the MC-1N BASIC program memory pointer at the first available RAM memory
location. The next command is to type NEW. This will set the top of memory
pointer (TOP) to the next available RAM memory location, which at this point is
address #1101. Now the MC-1N is ready to be programmed. The BASIC interpreter
can be given keywords and will respond to them in the "IMMEDIATE" mode. By
prefixing each line with a line number the lines will be stored in the program
memory space. Lines may be entered in any order because Tiny BASIC will insert
them in numeric order in program memory.

 GOOD LUCK and GOOD PROGRAMMING

1.4 HOW TO GET HELP

 FOR INFORMATION OR IMMEDIATE SERVICE, CALL 503-626-1012
 BASICON, INC, 11895 N.W. Cornell Rd., Portland, Oregon 97220

 - 7 -

 CHAPTER 2

 LANGUAGE SPECIFICATION

2.1 GENERAL INFORMATION

2.1.1 Design Considerations

 The original language of BASIC developed at Dartmouth College is designed
for people who have had no previous experience with computers. Because NSC Tiny
ASIC is a descendant of Dartmouth BASIC, it has similar syntax and is easy to
learn and use. However, NSC Tiny BASIC is designed specifically for process
control. Some Dartmouth BASIC features which are inappropriate to INS 8073
applications have been left out of NSC Tiny BASIC. Among these are
trigonometric and other transcendental functions, array and fractional numbers.
To further conserve memory space, all redundant commands and statement types
which can be duplicated by combining other commands have also been eliminated.

 However, NSC Tiny BASIC allows fast hardware tests, examination and
modification of any memory location or input/output port, bit by bit
examinations of any port, bit manipulation, and logical operations. The NSC
Tiny BASIC interpreter can process both decimal and hexadecimal values. An NSC
Tiny BASIC program may also access machine language code as a subroutine.

 Once the application program has been developed and tested, the MC-1N may
be converted from program development to automatic program execution mode. When
the development program is stored in an EPROM located in address #8000, the NSC
Tiny BASIC interpreter will execute it every time the system is powered up or
reset.

2.1.2 NSC Tiny BASIC’s Execution Modes

 NSC Tiny BASIC executes commands in one of two modes:

 Run
 Immediate

 The system is ready to accept a command when the NSC Tiny BASIC prompt, a
right pointing arrow head ">", appears at the left edge on a new line at the
terminal. To give an instruction in the immediate mode, enter a command
keyword, for example PRINT"HI". The command is executed when the carriage
return key is pressed. The above command will print HI on the next line of the
terminal The prompt will appear on the line following HI.

 - 8 -

 Programs are edited and interactively debugged in the immediate mode. Some
NSC Tiny BASIC commands, such as RUN, LIST, CONT, and NEW, are used exclusively
in the immediate mode. Others, such as GOTO and LET, are used in both modes.
Still others, such as INPUT and GOSUB cannot be used in the immediate mode.

 To enter the run mode, enter the command RUN in the immediate mode. If
there is a program in memory, it is executed. The system will return to the
immediate mode when program execution is complete, interrupted by an error,
BREAK, or control C key.

2.1.3 Program Line Syntax

 Unlike Human Beings, all computer languages operate under very strict
grammaric rules. In the computer world these grammar rules are called syntax.

 As with any computer language NSC Tiny BASIC requires strict adherence to
its syntax rules. Therefore, when you first begin programming you will probably
experience more syntax errors than anything else. As you become more familiar
with NSC Tiny BASIC, these syntax errors will decrease.

 The syntax is so strict that you must spell all keywords and commands
exactly as specified and all statements must be in exactly the correct order for
your program to run without errors. However, correct syntax does not guarantee
that your program will perform as you intend it to.

 Luckily NSC Tiny BASIC has only a handful of commands and statements to
learn so you should become proficient in a short time.

 A program is a series of instructions which, when executed sequentially by
the computer, accomplishes a specific task. It is entered into memory one line
at a time. This section describes the elements of a program line as the
computer reads them from left to right. A program line consists of a line
number and a command statement, as shown below:

 EXAMPLE

 100 PRINT "HELLO"

 The line number indicates that this instruction is part of a program and
should not be executed immediately, so NSC Tiny BASIC stores the line in memory.
Line numbers also indicate the sequence in which the instructions are to be
executed. Therefore, if other lines are already stored in memory, NSC Tiny
BASIC inserts the new line in its numerical place among them. Only values in
the range 0 (zero) to 32767 are accepted as valid line numbers.

 Several statements may follow a single line number if they are separated by
colons. Packing several commands on one line conserves memory space. The
number of commands in the line is not limited, but the line may not contain more
than 72 characters.

 The command statement has two parts: the command keyword and the argument.
In the example line above, PRINT is the command keyword and "HELLO" is the
argument.

 - 9 -

 NSC Tiny BASIC recognizes 18 statement keywords. Each specifies a
statement type which performs one of three actions:

 1. Assignment to a variable (LET)
 2. Input or output (INPUT, PRINT)
 3. Control flow (IF, GOTO, GOSUB, RETURN, DO, ON, FOR. LINK, UNTIL, STEP,
 NEXT, STOP, DELAY, and REM)

 In the sample program line above, a space separates the keyword PRINT from
the argument "HELLO". Although it makes the statement easier to read, the space
is unnecessary. Within the statement portion of a program line, NSC Tiny BASIC
ignores all spaces. Any spaces entered remain in the program and take up memory
space, however, NSC Tiny BASIC does not require that spaces separate (delimit)
parts of the statement. It looks for other clues which are specified to the
command keyword. These delimiters are discussed as each command is defined in
detail later.

 Occasionally, it will be necessary to use spaces after a HEXADECIMAL number
to avoid confusion about where the number ends and the next keyword begins.

 EXAMPLE

 50IFA<#14FORI=1TO10

 will be interpreted as having the number #14F
 and, therefore, should be written:

 50IFA<#14 FORI=1TO10
 or
 50IFA<#14THENFORI=1TO10

 The argument portion of a statement may be an expression or, in some cases,
another statement. An expression specifies a number of a computation resulting
in a number. Elements off expressions are discussed later.

2.1.4 The NSC Tiny BASIC EDITOR

 NSC Tiny BASIC supports interactive debugging with a self-contained line
editor. It also allows elimination of typing and other errors as the program is
entered. Editing is done in the immediate mode. To print a program currently
contained in memory, give the command LIST. Then examine the program and make
changes and additions using the techniques described below.

 NSC Tiny BASIC stores the program lines in line number sequence. If a line
is typed with the same number as a line already in memory, the new line
replaces the old one. If only the line number is entered, the line is deleted
from memory, the only way to change it is to retype the line.

 Until the carriage-return key is pressed at the end of the line, the
characters entered are temporarily stored in a line buffer. If an error is
detected in a line before it is stored in memory, correct it by backspacing
through the line buffer to the mistake and retyping. Backspacing by pressing
the backspace key or by holding down the control key and pressing H. Each
backspace keystroke deletes one character from the line buffer. If more
backspaces are entered than there are characters in the line buffer, NSC Tiny
BASIC deletes the whole line

 - 10 -

 If it is necessary to delete a whole line before entering it in memory, it
is quicker to hold down the control key and press the U than to backspace
through the line buffer. The control U keystroke cancels the contents of the
line buffer.

 Although the editor is most useful for changing program lines, it can
correct an immediate command before it is executed. It can also correct any
user input required during a program run.

2.2 ELEMENTS OF A NSC TINY BASIC EXPRESSION

2.2.1 Introduction

 Expressions represent the numeric values NSC Tiny BASIC needs to perform a
task. An expression consists of one or more of the following elements:

 o constants

 o variables

 o operators

 o memory references

 o functions

 The elements in a single expression are evaluated together when the
statement is executed. The evaluation produces a single numeric value to be
used in the execution to the instruction.

2.2.2 Constants (also Referred To As DATA)

 A constant is a value that does not change during the execution of a
program and must be represented by a number or string. In NSC Tiny BASIC all
data is of two major types:

Numerics: INTEGER -32767 to +32767
 BYTE 0-255
 BOOLEAN TRUE or FALSE

Strings: STRING Any alphanumeric character or "string" of
 characters

 There are three numeric types of data: integer, byte and Boolean. All
three of the numeric types can be intermixed in expressions without generating
an error message. This can lead to unexpected results in complex expressions.
NSC Tiny BASIC does generate an error message if string types are used where
numeric types are expected but no error is generated if numeric types are used
where string types are expected because numbers can be strings too.

 - 11 -

2.2.2.1 Numbers -

 All of our normal day to day usage of numbers are what mathematicians call
the decimal number system. Any number we use is made up of digits. These
digits are the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. All numbers we use are
combinations of these ten basic digits.

 Computers, due to the nature of the electronic circuitry that make them up,
work best with a number system that has only two numerals, 0 and 1. This is
called the binary number system. The NSC Tiny BASIC, however, allows us to use
the decimal numbers and interprets these decimal numbers onto the binary numbers
which the computer can use.

 For those of us who are writing programs that must control or utilize
electronic circuits directly from the computer, it is sometimes very important
to know what binary numbers the computer is using for the task at hand (see
chapter three for a discussion on binary numbers). However, binary numbers can
get very long, for instance 987 would look like 1111011011. And, to make
matters worse, it is not very obvious, from looking at the decimal number, what
its binary representation is. To help programmers visualize the binary numbers
the computer is using without having to write out all those 1’s and 0’s Tiny
BASIC will also recognize what is called "hexadecimal" numbers. Hexadecimal
numbers are composed of digits taken from sixteen numerals:

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.

 The numerals used to represent the numbers ten through fifteen are A thru
F. This may cause some confusion at first but believe it or not you can get
used to reading and writing these types of numbers.

 If you wish Tiny BASIC to interpret a particular number as a "hexadecimal"
number then that number must be preceded by a "#" symbol.

 Example:
 LET A= 987 Normal or decimal number
 LET B= #1733 Interpret 1733 as a "hex" number
 LET C= 3A3 Bad Number, You will get a syntax error.

 Sometimes, in this manual, we will use hexadecimal numbers when the HEX
number is easier to remember and use, for instance, the command NEW #1100 from
chapter 1 could have been stated with a decimal number just as well; New 4352.
The hexadecimal #1100 is easier to remember and use than 4352 because the
hexadecimal numbers of most interest in addressing major blocks of memory, such
as #1100, look more like boundary numbers than the decimal number 4352. This
manual will go into more detail on the HEX number system in the next chapter
though examples showing HEX numbers will occasionally appear in this chapter.

 NOTE

 It is not within the scope of this manual to go
 into great detail with the definition of certain
 terms, so forgive us if the definitions given seem
 somewhat brief.

 - 12 -

2.2.2.2 Integers -

 Integers are whole numbers such as 1, 5, -17, 0, etc. They do not have
fractional or decimal parts. NSC Tiny BASIC considers integers to be whole
numbers in the range of -32768 to +32768 (#0 to #FFFF in HEX).

Example:
 3426 OK
 -1872 OK
 7 1/2 Not an integer, if used will cause error message.
 32000 OK
 -18.65 Not an integer. Error message generated.
 -176000 Number too big. Error message generated.
 #4F00 OK
 #3D0F2 Number too big. Error message generated.

 Normally numbers can be of any size but Tiny BASIC must restrict the sizes
to the numbers if can handle to keep the NSC Tiny BASIC Program memory
requirements within reason. If you have a need to use large numbers or
fractions the NSC Tiny BASIC instructions can be used to handle them by writing
the routines do so in your program.

2.2.2.3 Bytes -

 Bytes are whole numbers in the range of 0 to 255 (#0 to #FF in HEX). Tiny
BASIC further restricts numbers in a few places to bytes which we will mention
as we progress through this chapter. (See Chapter 3, Product Description for
more detail.)

Example:
 0 OK
 17 OK
 #82 OK
 -30 Minus not recommended (interpreted as 225)
 1742 Too big (interpreted as 206)

2.2.2.4 Booleans -

 Boolean numbers are a very special case of mathematics. They have only two
values, usually called TRUE or FALSE. In Tiny BASIC FALSE is represented by a
numeric value of 0 while TRUE is any other integer value. This may seem
confusing but boolean numbers play a very important role in NSC Tiny BASIC, so
just file this definition away until later in this chapter.

 - 13 -

2.2.2.5 Strings -

 String in the computer world has a very specific meaning. Consider, in
English, the use of string to mean a chain of similar objects, such as a string
of beads or a string of cars, etc. In Tiny BASIC a string is a "chain" of
characters where a character is a letter, a number or special symbols.

Example:
 "HI THERE"
 "THIS IS A STRING"
 "SO IS * - @ , + / ? ALL OF THIS"
 "ARE YOU GETTING THE IDEA?"

 NOTE

 The string is the characters between the quotation
 (") marks but not including the quotation marks.

 Another characteristic of strings is that they must have a beginning and an
end. NSC Tiny BASIC interprets a quotation mark as the beginning of a string
and the next quotation mark ends the string. There are other ways to begin and
end strings but more on that later. The string enclosed by quotes is called a
STRING CONSTANT.

2.2.3 Variables

 As the name implies, a variable is a number (or string) that does not have
a fixed or constant value. Since it does not have a fixed value then we must
assign our variable a name. This name is called the variable identifier. In
NSC Tiny BASIC there are twenty six variables available. They are simply given
the "names" of the letters of the alphabet (i.e. "A" through "Z"). Numeric
variables are normally used to hold the results of mathematical operations.

Example:
 A= 15 Assign 15 to variable A
 B= A+42 Assign 57 to variable B [15+42]
 C= (A+12)*B Assign 1539 to variable C [(15+12)*57]
 A3= 32 Error, only variables A through Z are available

 - 14 -

 String variables are also available in NSC Tiny BASIC. They are identified
by preceding the variable name with a "$".

 NOTE

 CAUTION! If you are already familiar with the
 BASIC language from another computer -BE CAREFUL-
 because in other versions of BASIC the "$" may
 follow the variable name.

Example:
 10 $A= "HI THERE" Assign HI THERE to string variable A.
 20 $B= $A Assign HI THERE to string variable B.
 30 A$= "CAREFUL" Error the $ must precede the variable name.

 There is more to the string variables which will be covered in a more
appropriate section.

 Before any strings are stored the address of the string variables must be
set to some free memory area. Care must then be taken to insure that a string
loaded to a string variable is not too long thus causing the string to write
over data stored in the addresses above those assigned to the original variable.

 String moves are performed by a simple assignment statement such as:

Example:
 $D = "HI THERE":$C=$D

 The string variables $C and $D each now hold the same strings. The do not
just point to the same locations in memory.

Example:
 10 A=TOP Points to ram memory above top of program
 20 C=TOP+100 C points to RAM 100 bytes above A
 30 D=TOP+200 D points to RAM 100 bytes above C
 40 INPUT $A Stores characters where A points
 50 PRINT $A Prints characters pointed to by A
 60 LET $C="IS THE STRING INPUT AT LINE 10"
 70 $D=$C Stores characters where D points
 80 PR$D Prints characters pointed to by D

 Before we move on there is one more type of variable to mention. This is
the MEMORY VARIABLE (or MEMORY REFERENCE). This type of variable will be
treated extensively in later chapters, but for now, this is a very powerful
feature of NSC Tiny BASIC which allows the program to directly manipulate
specific memory locations and INPUT/OUTPUT circuits. A memory reference is
indicated to Tiny BASIC by preceding an expression with an ’at sign’ "@".

 - 15 -

Example:
 10 A= @4500 Assigns contents of memory location 4500 to A
 20 B= 4501 Assigns 4501 to B
 30 @B= 17 Places 17 in memory location 4501
 40 C= @#8000 Contents of memory location#8000 to variable C

Memory references are of data type ’byte’, more on this later.

2.2.4 Operators

 An operator indicates a calculation to be performed when an expression is
evaluated. NSC Tiny BASIC supports three sets of operators: arithmetic
operators, logical operators, and relational operators.

 - 16 -

3.3.4.2 Arithmetic Operators -

 NSC Tiny BASIC recognizes the traditional four (4) arithmetic operators
which are:

 + Add
 - Subtract
 * Multiply
 / Divide

 Operations are performed from left to right. If all four appear in a
single expression, multiplication and division are performed first, followed by
addition and subtraction. This may be altered by the use of parentheses.

Example:
 3*24-18/3+10 = 76
 3*(24-18)/(3+10) = 1

NSC Tiny BASIC does not support fractional numbers, therefore, the remainder of
the division in the second line is discarded. Division by zero causes an error
break and return to the immediate mode.

2.2.4.2 Logical Operators -

 In addition to the traditional arithmetic operators, NSC Tiny BASIC also
supports three (3) logical operators:

 AND

 OR

 NOT

 The AND and OR operators are very powerful operators for manipulating data
that is to be used to control input and output peripherals. Their operation
cannot be simply stated with examples at this point in the manual since we have
not gone into the definition of bits yet, so we will leave the further
definition of these operators to chapter 3.

 NOT is an operator which performs a ONES COMPLIMENT operation on a single
expression. What this means in plain english is that any expression that is
preceded by a NOT will have one added to its result and then its arithmetic
sign will be changed:

EXAMPLE:
 NOT 15 yields -16
 NOT(-1) yields 0

 - 17 -

2.2.4.3 Relational operators -

 In NSC Tiny BASIC relational operators normally specify conditional
relationships in IF statements and in DO statements. There are six (6) which
are:

 = equal to
 > greater than
 < less than
 <= less than or equal to
 >= greater than or equal to
 <> not equal to

 The symbol >< is not legal.

 The above operators always return a boolean result (TRUE) or (FALSE).

 Their usage is usually quite clear by their context (see examples of the IF
and DO statements later in this chapter).

2.2.4.4 Complex expressions -

 The order of analysis of expressions in NSC Tiny BASIC is:
 1. Expressions are operated on from LEFT to RIGHT
 2. Solution of expressions held in parenthesis
 3. Solution of NOT, multiplication and division
 4. Solution of AND, OR, addition and subtraction

EXAMPLE:
 X = X + A OR C
 A = X/Y
 A = A + B OR C / Y

 In the first example, above, the expression will be evaluated from left to
right since from the list of priorities addition and OR are on the same line.
In the second example the value of A will be determined by the value in X and
the value in Y. In the third example A will be added to B, then C will be
divided by Y, then the result of A+B will be ORed with the result of C/Y. The
third example result will be significantly different than the result of the
second example expression.

 If there is ever any doubt about how your expression is going to be
evaluated use parenthesis liberally in the expression.

 - 18 -

 Take care, in your expressions, to watch for conditions where division by
zero might occur or where the results of an expression may become too large thus
causing an erroneous result.

EXAMPLE:

 FOR I = -4 to 4: PR 10/I: NEXT I
 Will BREAK when I = 0

 FOR B = 25 TO 38 : A = B * 1000 : PRINT A
 Will print incorrect answers when B > 32

 - 19 -

2.2.5 Functions

 NSC Tiny BASIC includes the following functions:

 1. MOD

 2. RND

 3. STAT

 4. TOP

 5. INC

 6. DEC

 - 20 -

2.2.4.1 The MODulo function -

SYNTAX

 ------------ ------------
 ----> MOD ---> (--->| EXPRESSION |---> , --->| EXPRESSION |--->) ----->
 ------------ ------------

 Returns the absolute value of the remainder of the first entry divided by
the second entry where the entries are arbitrary expressions. If the value of
the second entry is zero, an error break will occur as in any division by zero.

Example:
 10 PRINT MOD(17,15)
 yields 2

2.2.5.2 The RaNDom function -

SYNTAX

 ------------ ------------
 ----> RND ---> (--->| EXPRESSION |---> , --->| EXPRESSION |--->) ----->
 ------------ ------------

 Returns a pseudo-random integer in the range of the first entry through the
second entry, inclusive. For the function to perform correctly the first entry
should be less than the second entry and the second entry minus the first entry
must be less than or equal to 32767 (base 10).

Example:
 10 PRINT RND(1,5)
 yields either 1,2,3,4 or 5

2.2.5.3 The STATus function -

SYNTAX

 -----> STAT ----------------------------------->

 Returns the 8-bit value of the INS 8073 Status Register. STAT may appear
on both sides of an Assignment Statement. This allows the programmer to modify
the status register as well as read it. (More on this in chapter 3).

Example:
 10 PRINT STAT
 yields an integer between 0 and 255

 - 21 -

2.2.5.4 The TOP OF PAGE FUNCTION -

SYNTAX

 -----> TOP ------------------------------------>

 Returns the address of the first byte above the NSC Tiny BASIC program in
the current page which is available to the user. This will be the address of
the highest byte in the NSC Tiny BASIC program plus 1. All the memory in RAM
above and including TOP can be used by the NSC Tiny BASIC program as scratchpad
storage.

Example:

 10 D=TOP
 Stores the top of memory address in D

2.2.5.5 The INCrement function -

SYNTAX

 ----> INC ---> (--->| EXPRESSION |--->) ----->

 Used to increment a memory location (X) indicated by the expression.

Example:

 INC #16FF

2.2.5.6 The DECrement function -

SYNTAX

 (1)
 --> SP -->
 | | ------------
 ----> --------->----> DEC --->| EXPRESSION |--->

 Used to decrement a memory location (X) indicated by the expression.

Example:

 DEC #16FF

 - 22 -

2.3 STATEMENTS

 NSC Tiny BASIC includes the following statements:

 1. CLEAR

 2. DELAY

 3. DO

 4. FOR

 5. GOSUB

 6. GOTO or GO

 7. IF / THEN

 8. INPUT

 9. LET

 10. LINK

 11. NEXT

 12. ON

 13. PRINT or PR

 14. REM

 15. RETURN

 16. STOP

 17. UNTIL

 - 23 -

2.3.1 CLEAR

SYNTAX

 ------------------> CLEAR --->

Example:
 20 CLEAR

 CLEAR initializes all variables (A to Z) to 0, disables interrupts, enables
BREAK from the console and resets all stacks used by GOSUB, FOR/NEXT and
DO/UNTIL statements and re-establishes the BAUD RATE from the jumpers on the
board (see chapter 1).

 - 24 -

2.3.2 DELAY

SYNTAX

 (1)
 --> SP -->
 | | ------------
 ------->---------->----> DELAY ------>| EXPRESSION |--------------->

Example:
 20 DELAY 0
 30 DELAY 17

 DELAY is used to suspend the execution of NSC Tiny BASIC programs for a
specific amount of time from 1 to 1040 milliseconds in millisecond increments.
A time unit of 0 gives the maximum delay of 1040 milliseconds.

 - 25 -

2.3.3. DO

SYNTAX

 (1)
 --> SP -->
 | | (3)
 ------->---------->----> DO -->

Example:
 10 I = 0
 15 DO
 20 PRINT I
 30 I = I + 1
 40 UNTIL I > 10

 DO is not a standard BASIC statement. It may be used in NSC Tiny BASIC
instead of FOR / NEXT statements for program loops and greatly improves the
readability of the program. The DO statement marks the beginning of a series of
statements which are terminated with an UNTIL statement. The series of
statements are repeated until a condition is met (see the UNTIL statement).

 - 26 -

2.3.4 FOR / TO / STEP

SYNTAX

 -->| MEMORY REFERENCE |-->
 (1) ^ ------------------ |
 --> SP --> | -------
 | | | ---------- | ------------
 ------------>---> FOR -->--->| VARIABLE |-->---> = -->| EXPRESSION |-->
 ---------- ------------ |
 |
 <---
 |
 | ------------ ------------
 --> TO -->| EXPRESSION |-->---> STEP -->| EXPRESSION |-->-------->
 ------------ | ------------ ^
 | |
 ------------------------------>

Example:
 FOR I=1 TO 100
 FOR J=A TO 55
 10 FOR Q=Z TO Z+100
 34 FOR K=1 TO 100 STEP 2

 This is a standard BASIC statement where the STEP instruction is optional
and if not included takes the value of +1. STEP may be either positive or
negative. The FOR statement marks the beginning of a series of statements which
are terminated with a NEXT statement (see the NEXT statement). The FOR
statement must include the upper and lower limits for the loop. The loop is
repeated until the upper limit of the FOR instruction is reached at which time
the program will proceed to the numbered program statement following the NEXT
statement. NSC Tiny BASIC causes a break if the variable in the NEXT
instruction does not match that in the FOR instruction. FOR/NEXT statements may
be nested up to four deep but each nesting level must be complete within a
higher nesting level. A FOR loop will always be executed at least once.

 - 27 -

2.3.5 GOSUB

SYNTAX

 (2) ------------
 --->----------> GOSUB ---------->| EXPRESSION |------------------------->

Example:
 GOSUB 100
 GOSUB A
 10 GOSUB A*100

 GOSUB is useful when a computation or an operation must be performed at
more than one place in a program. Without having to enter the same code more
than once the GOSUB statement may be used to call the often used routine at any
time. The GOSUB statement is also useful since it allows programs to be written
in small pieces (called "procedures" or "subroutines") which makes for easier
finding and correcting of errors. The expression following the keyword GOSUB
may be either the number of the first line of the subroutine or an expression
which results in the line number of the desired subroutine.

 One subroutine may call another. The last instruction of each "subroutine"
must be the RETURN instruction which causes the NSC Tiny BASIC program to resume
execution at the line number following the original GOSUB instruction. In this
way, subroutines may be nested to a level of eight (8).

 - 28 -

2.3.6 GOTO / GO

SYNTAX

 ----> GO ---->
 ^ |
 | | ------------
 ------->----> GOTO --->---->| EXPRESSION |-------------------------

Example:
 GOTO 100
 45 GO 100
 GOTO #FF
 56 GOTO A*100

 GOTO unconditionally changes the sequence of the program execution. NSC
Tiny BASIC allows the program to branch to a specific line number or a line
number called by an arbitrary expression. Therefore, in the example GOTO A*100,
if A is 10, 11 or 12 the program will continue execution at program steps
numbered 1000, 1100, or 1200.

 GOTO is often used in interactive debugging because GOTO enters the RUN
mode. Unlike the RUN command GOTO can specify the line number to begin
execution and does not reset the variables to zero (0).

 Because GOTO unconditionally changes the program sequence, any statements
that follow on the same line will not be executed.

 "GO" may be used to make more compact programs, although this may make them
less readable.

 - 29 -

2.3.7 IF / THEN

SYNTAX

 ------------->
 ----------- | | -----------
 ---> IF --->| CONDITION |--->----> THEN --->---->| STATEMENT |----->
 ----------- -----------

Example:
 IF A>B THEN PRINT "A>B"
 IF A>B PR "A>B"
 IF X=Y IF Y=X PRINT "X=Z"
 IF A<>B I=0:J=K+2:GOTO 100
 IF A<1 GO 1000

 The IF/THEN statement allows the program flow to be modified by a logical
test condition. The test condition follows the IF instruction of the statement
and may be either a line number, or a list of statements separated by colons.

 IF compares the value of the first expression to the value of the second
expression. If the result of the comparison is TRUE (-1) the clause of the IF/
THEN statement is executed. If the comparison is FALSE the next line numbered
statement is executed.

 NSC Tiny BASIC allows the omission of the word THEN to conserve memory
space.

 - 30 -

2.3.8 INPUT

SYNTAX

 --->| STRING VARIABLE |-->
 ^ ----------------- |
 | |
 | ---------- |
 ---------> INPUT --->---->| VARIABLE |--------->------------------->
 ^ ---------- |
 | |
 <------- , <--------------

Example:
 5 INPUT A
 15 INPUT A, B
 25 INPUT $C

 INPUT is used to input data to an NSC Tiny BASIC program. One or more
items (variables, expressions and strings), separated by commas, may be entered.
Upon execution of the INPUT statement the NSC Tiny BASIC program will prompt the
user with a question mark "?". Each INPUT statement must have one or more
variable into which to put the items requested by the prompt "?". After the
user responds with a carriage return the NSC Tiny BASIC program will check for
proper data type. If no data type is encountered an error break occurs followed
by the prompt ">".

 The acceptable input for the variable "A" or "B" is an integer. If the
input is not an integer the error message "RETYPE" will be printed followed by
the prompt "?" until an integer or expression is read. A comma between multiple
expression inputs may be replaced by spaces if the following expression does not
start with a plus (+) or minus (-) sign.

 The acceptable input for "$C" is any ASCII character (see ASCII character
chart in the appendix) until a carriage return is typed or the number of
characters limit for one line is reached. The entered characters are stored in
a line buffer until a carriage return is pressed. The characters are then
transferred to memory in successive locations beginning at "C" and continuing
with "C+1" etc, until "C+n" which holds the end of string character, the
carriage return "<cr>". Quotation marks are not used for input.

 - 31 -

2.3.9 LET

SYNTAX

 ------------------ -----------------
 -->| STRING VARIABLE |-----> = -------->-->| STRING CONSTANT |-->
 ^ ------------------ | ----------------- |
 | | |
 | ------------------ | |
 -->| MEMORY REFERENCE |-------> | |
 | ------------------ | | ----------------- |
 <---------- | ->| STRING VARIABLE |-->
 | | ----------------- |
 ------------> | |
 | | ---------- | ------------ |
 -->---> LET -->--->| VARIABLE |--->----> = ------>| EXPRESSION |----->--->
 | ^ ---------- ------------
 | (1) |
 ---> SP ---->

Example:
 10 LET X=34
 10 X=A*34

 LET may be used or omitted in an assignment statement. The execution of an
assignment statement is slightly faster if the word LET is used, however, it
requires more memory. The left portion of an assignment statement may be a
simple variable, number or an expression in parentheses.

 - 32 -

2.3.10 LINK

SYNTAX

 ---------------> LINK --->| EXPRESSION |--------------------------->

Example: 55 LINK#8D00
 15 IF A=5 THEN LINK(B+15)
 450 DO: LINK4500 : UNTIL A=32

 The LINK statement is the means by which a program may call machine
language routines. This is used when efficient code or time critical processes
must be executed. Execution of this statement will cause the INS 8073 to
transfer control to the machine language routine beginning at <address>. This
statement is conceptually very similar to the GOSUB statement. The Tiny BASIC
program will continue with the next statement upon a return from the LINK
statement (See chapter 3).

 - 33 -

2.3.11 NEXT

SYNTAX

 ----------------->
 ^ |
 | ---------- |
 ---------> NEXT -->--->| VARIABLE |-->----------------------------->

Examples:
 95 NEXTJ
 15 FOR I=0 TO 15 : PRINT "" : NEXTI
 737 NEXT N : NEXT T : PR "LOOPS DONE"

 The NEXT statement is used to mark the end of a FOR loop. The variable
identifier may be omitted. If it is included, it must be the same identifier as
specified in the FOR statement which this NEXT statement is terminating. It is
recommended that the identifier always be used, it makes the program easier to
read and the error checking done by Tiny BASIC is more likely to catch a
programming error. (See the FOR statement).

 - 34 -

2.3.12 ON

SYNTAX

 ------------ ------------
 -------> ON --->| EXPRESSION |---> , --->| EXPRESSION |------------>
 ------------ ------------

Example:
 15 ON 1,0
 30 ON 2,500
 440 G=1500 : ON 1,G : B=#8500

 The ON statement allows the NSC Tiny BASIC program to GOSUB to <line
number> when a hardware interrupt occurs (See chapter 3). Specifying a line
number of zero causes a software disable of the corresponding <interrupt
number>. Use of the ON statement disables terminal interrupts (break function).

 - 35 -

2.3.13 PRINT / PR

SYNTAX

 --->| STRING CONSTANT |--->
 ^ ----------------- |
 | |
 | ----------------- |
 --->| STRING VARIABLE |--->
 ^ ----------------- |
 ---> PR ----> | | --> ; -->
 | | | ------------ | | |
 -----> PRINT -->---->---->| EXPRESSION |-------->---->--------->----->
 ^ ------------ |
 | |
 <-------- , <--------------

Example:
 10 $D = "HI THERE":PR$D
 yields HI THERE<cr><lf>

 The PRINT statement is used to output information from the program. To
conserve memory space a "PR" may be used in place of the word "PRINT". Quoted
strings are displayed exactly as they appear with the quotes removed. If a
message must be punctuated with a quotation mark, use the single quote or
apostrophe instead. All numbers and results of expressions are printed in
decimal format with leading zeros and divisional remainders omitted. Positive
numbers will be preceded by a space and negative numbers will be preceded by a
minus sign (-). There is a trailing space for all numbers. A semicolon (;) at
the end of a PRINT statement suppresses the carriage return and line feed with
which NSC Tiny BASIC normally terminates the output.

 Strings stored in memory (such as those generated by string input and
string assignment statements) may also be printed.

 - 36 -

2.3.14 REMark

SYNTAX

 -----> REM -->--->| CHAR |-->---> CR -->
 | ------ |
 <-------------

Example:
 10 REM THIS IS A COMMENT TO THE PROGRAMMER
 95 X=35 : REM THE VARIABLE X IS SET TO 35

 The REM statement is used to insert comments or explanatory messages in the
code. NSC Tiny BASIC ignores anything following the REM keyword and, therefore,
must be the last command on the line. Remarks make the program easier to read
and can provide good documentation within the program listing but take
considerable memory space and should be left out of the finished program to make
best use of available memory.

 - 37 -

2.3.15 RETURN

SYNTAX

 (2)
 ---------> RETURN ---------->

Example:
 50 RETURN
 200 FOR I=0 TO 10 : PR "" : NEXTI : RETURN

 The RETURN statement is always the last instruction of a subroutine. It
does not require an argument, because the GOSUB stores the next statement where
the RETURN can resume normal sequential execution. RETURN must be the last
statement on a line. (Refer to the GOSUB statement).

 If one subroutine calls another, the RETURN statement at the end of the
second subroutine returns execution to the first subroutine. In this way,
subroutines may be nested to the depth allowed by the memory available to the
GOSUB stack (see Programming notes at the end of this chapter).

 - 38 -

2.3.16 STOP

SYNTAX

 ----------------------------> STOP -------------------------------->

Example: 25 STOP
 550 PRINT "WE ARE DONE" : STOP

 The STOP statement may be used in a program to halt execution at any point
which is useful for debugging purposes. When NSC Tiny BASIC encounters a STOP
statement it prints a stop message and the current line number and executes a
break. Execution of the program may be continued from the next statement
following the STOP by typing the command CONT. (See interactive debugging and
errors in this chapter).

 - 39 -

2.3.17 UNTIL

SYNTAX

 (3) -----------
 ----------> UNTIL ------>| CONDITION |----------------------------->

Example:
 35 UNTIL X=15
 90 DO: PRINT "": UNTIL (X+Y)=99
 490 UNTIL A=0 : PR "THE TASK IS COMPLETE"

 The UNTIL statement is the last statement in a DO loop. The DO loop will
continue to execute until the expression in the UNTIL statement is true. Normal
sequential execution by the program will then continue with the next statement
after the UNTIL statement. (Refer to the DO statement).

 - 40 -

2.3.18 Multiple Statement Line

Example:
 10 FOR I = 1 TO 10:PR RND (1,10):NEXT I

 Multiple statements are permitted on a single line by placing a colon ":"
between statements. Lines may be made as long as the line buffer will permit
(72 characters). This may help readability and save memory but care must be
taken when writing each line, especially those containing conditional tests (see
IF statement).

 - 41 -

2.4 COMMANDS

 As mentioned above NSC Tiny BASIC has two modes of operation, command mode
and execute mode. Upon reset and any time the program execution is halted the
Tiny BASIC is in command mode which it indicates by printing a greater than
symbol ">". In the command mode most statements may be executed immediately
(see errors and interactive debugging below). In addition there are four
commands which are not executable in the RUN mode:

 NEW

 RUN

 CONT

 LIST

2.4.1 NEW

Example:

 NEW #1100
 NEW
 NEW 32768

 The NEW command has two forms, with and without an argument. If the NEW
command is followed by an argument, the argument becomes the starting address in
memory of a NSC Tiny BASIC program. If the argument points to a ROM address the
NSC Tiny BASIC program beginning at this address will execute. If programs are
going to be written into RAM then this command must be given before writing your
program else an out of memory error will result. Program memory including the
end of memory pointer is not altered by this command.

 Once the starting address has been specified as above, then a NEW command
is typed without an argument. This clears any old programs that may have been
present in RAM and is now ready for you to enter a new program.

2.4.2 RUN

Example:

 RUN

 The RUN command starts program execution at the beginning of the Tiny BASIC
program. It clears all variables and stacks, enables the break key on the
terminal and resets the terminal baud rate per the jumpers.

 - 42 -

2.4.3 CONTinue

Example:

 CONT

 The CONT command is used to resume execution of a program which has been
halted with a STOP statement or the break key on the terminal. Execution will
resume with the next executable statement after the STOP statement or the next
executable line after the break. (See errors and interactive debugging below).

2.4.4 LIST

Example:

 LIST
 LIST 150

 The LIST command is used to generate a listing of the current program
stored in memory on the terminal. If an argument is specified the listing will
begin at that line number.

 - 43 -

2.5 ERRORS AND INTERACTIVE DEBUGGING

2.5.1 Errors

 Errors occur whenever NSC Tiny BASIC is unable to interpret an instruction.
An error returns the system to the immediate mode, except when an INPUT
statement is expecting an integer, with all variables and stacks as they were at
the time the error was detected. The error message will be displayed on the
terminal in the following format:

 ERROR <error code> AT <line number>

 The error codes are shown below.
 NSC Tiny BASIC ERROR MESSAGES

 1. Out of memory
 2. Statement used improperly
 3. Unexpected character (after illegal statement)
 4. Syntax error
 5. Value (format) error
 6. Ending quote missing from string
 7. GO target line doesn’t exist
 8. RETURN without previous GOSUB
 9. Expression or FOR-NEXT or DO-UNTIL nested too deeply
 10. NEXT without previous matching FOR
 11. UNTIL without previous DO
 12. Division by zero

 If the error is found while the program is running, the error message will
display the line number. An error message which occurs while executing an
instruction in the immediate mode will not display a line number. An error
occurs after a line is entered and the carriage return has been pressed if NSC
Tiny BASIC cannot interpret a keyword or expression. NSC Tiny BASIC will stop
executing on the first error found so lines with multiple errors must be
debugged completely before the next line will be interpreted.

 - 44 -

2.5.2 Interactive debugging

 NSC Tiny BASIC allows interruptions and changes during a program run to
correct errors and add new instructions without disturbing the sequence of the
program.

 To interrupt the running program, hold the <control> key down and press
<C>. The input buffer is tested for the control C character at the beginning of
each BASIC instruction. If <control C> is found program execution stops and the
following message is displayed on the terminal:

 STOP AT LINE <line number>

 A more reliable method is to press the <break> key. This causes the
program execution to stop at the beginning of the next numbered line. The
message displayed on the terminal is:

 BREAK AT LINE <line number>

 Another method is to insert STOP statements where you wish to halt the
program. The variables and program execution level is preserved, the program or
variables may be displayed, then execution may be resumed by entering a CONT
statement. There is a message which is displayed on the terminal as follows:

 STOP AT LINE <line number>

 As a last resort the program may also be stopped by pressing the reset
switch, connected as described in the preceding chapter. The program pointer
must then be reset with the NEW <program address> statement. The program stored
in memory will not be affected.

 - 45 -

2.6 PROGRAMMING NOTES

2.6.1 Programs in PROM

 Due to the way Tiny BASIC works the first statement in a program to execute
in PROM must be CLEAR. If CLEAR is not present the program will not function
properly or not work at all.

2.6.2 Execution speed vs. memory space

2.6.2.1 Introduction -

 Depending on the application, some programs are limited by the memory space
available, while others are limited by the time necessary to execute each
instruction. There are trade-off relationships between program readability,
memory space, and execution speed. The following sections advise how to code a
program for either minimum memory usage or minimum execution time.

2.6.2.2 Conserving Memory Space -

 To conserve memory space, eliminate all optional keywords such as LET and
THEN from the code, and eliminate all spaces wherever possible. Abbreviate
PRINT to PR and GOTO to GO. A STOP command is implied at the end of a program
so it may be omitted. Remarks should also be eliminated.

 There are three ways to conserve memory space by reworking line numbers.
First, line numbers are stored in ASCII, one byte per digit. Bytes are saved by
using low line numbers.

 Second, space is allotted for 26 variables whether they are used or not.
Variables not used by the program may be used to address subroutines or GOTO
destinations by storing the line number in the variable. For example if the
subroutine at line 4000 is used several times in a program, the following
statements store the line number in the variable, the use the variable as a line
number. Example
 23 A=4000
 24 GOSUB A

 The variable A could be used elsewhere in the program where the value 4000
is needed as data; NSC Tiny BASIC makes no distinction between data and line
number values.

 The third method is that each line has an overhead in memory of ASCII
bytes. One for the line number and one for the terminating character <cr>.
This overhead may be reduced to one byte per statement by entering several
statements on a single line. The overhead is then one byte for the colon
separating the statements.

 - 46 -

2.6.2.3 Improving execution time -

 Although NSC Tiny BASIC does not execute instructions as quickly as machine
code, some coding practices improve execution time. Including the keyword LET,
for example, eliminates the interpreter’s search through the keyword list to
find the implied command.

 Speed of execution may also be improved by eliminating spaces, remarks and
THEN, and also by abbreviating PRINT and GOTO. It takes longer to convert two
more ASCII digits to binary than to fetch a variable from memory. Use variables
for any frequently needed large constant.

 Using low line numbers for frequently used subroutines saves executions
time as well as memory space. When normal sequential execution is interrupted
by a GOTO, GOSUB, or RETURN, NSC Tiny BASIC scans the program from the beginning
until it finds the desired line. Therefore, the closer the desired line is to
the beginning of the program, the sooner the search succeeds.

2.6.3 The nesting stack

DO/UNTIL statements may be nested up to 8 levels deep (including interrupt
levels).

GOSUB statements may be nested up to 8 levels deep (including interrupt levels).

FOR / NEXT statements may be nested up to 4 levels deep (including interrupt
levels).

The arithmetic expression stack is 13 levels deep.

 - 47 -

 CHAPTER 3

 PRODUCT DESCRIPTION

3.1 INTRODUCTION

 The MC-1N is a "minimum" configuration microcomputer that can be used in
"real time" process control applications. The MC-1N is designed to be used
where low cost application of the power and flexibility of a microprocessor are
required. The MC-1N is compact and easy to use and affords many opportunities
for controlling a myriad of different kinds of hardware through its 24 I/O
lines. The MC-1N is contained on a 3" by 4" double sided printed circuit board
which has the following major components:

 INS 8073 microcomputer with built in Tiny BASIC
 8255A Programmable Peripheral Interface
 MM57184N Programmable Real Time Clock/Calendar
 HM6116LP 2K by 8 RAM
 2732 4K by 8 ROM
 LM358 Serial Interface Buffers
 ICL7660 Negative Voltage Supply

 A more detailed description of the functions of the first four of the above
components is included in later sections. First, however, is a discussion of
how and what a computer uses in its execution of the program that controls it.

3.1.1 Bits and Bytes

 This section assumes that you will be using an INS 8073 with at least 256
memory locations; this is the minimum configuration to run NSC Tiny BASIC.

 The following points will be detailed:

 o A binary digit (bit) is either 0 or 1.

 o One byte consists of eight binary digits commonly called bits.

 o Each memory location holds, or stores, one byte of information.

 Computers can deal with only two conditions 1 (ON) or 0 (OFF). (Humans
have many levels of awareness such as in sensing temperature there are many
sensational levels between cold and hot.) These two conditions are referred to,

 - 48 -

individually, as binary digits or bits. Bit is a contraction of BInary digIT.

 A computer with this level of sophistication is of little more use than an
ordinary light switch. By combining these bits into groups a computer can then
have more flexibility than on or off. A group of eight bits is referred to as a
BYTE. Each memory location in the INS 8073 microcomputer is eight bits, or one
byte, wide, and therefore holds one byte of information.

 A memory location may be thought of as pictured below.

 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | The number 1 stored in
 ------------------------------- binary.

 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | The number 2 stored in
 ------------------------------- binary.

 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | The number 3 stored in
 ------------------------------- binary.

 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | The number 4 stored in
 ------------------------------- binary.

 |
 |
 |
 |

 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | The number 73 stored in
 ------------------------------- binary.
 ^ ^
 | |
 | |
 Most significant digit Least significant digit

 Each successively more significant bit has a higher value which allows a
byte to hold the values of from 0 (all zeros) to 255 (all ones).

 A computer that can count only to 255 is of rather limited use so bytes may
be combined into larger groups as in the case of some special purpose memories
called REGISTERS. One such register is called the program counter and consists
of two bytes, which allows it to count to 65536. The program counter is used to
select the memory address which holds the next piece of program information to
be used by the computer.

 - 49 -

3.1.2 The memory address

 Each memory location has a unique numeric address. The NSC Tiny BASIC
program in the INS 8073 system occupies locations with addresses 0 to 2559.

 An expanded INS 8073 system might have more memory locations. For example,
the MC-1N has 2048 locations but the INS 8073 will allow expansion up to 65536
locations. These may be memory locations or ports for peripheral devices.

 Two points to keep in mind are:
 o Memory locations 0 to 2559 hold NSC Tiny BASIC in the on-chip ROM (Read
 Only Memory) of the INS 8073.
 o Addressed 2560 through 65471 are yours to use. When you type in an NSC
 Tiny BASIC program you use some of these. The larger your program the
 more you use. In using the Programmable Peripheral Interface you will
 also be using some of these addresses. Not all of these memory
 locations will actually be used for most applications and not all of
 them are connected in the MC-1N but they are available and may be used
 by decoding them in your application circuitry.

3.1.3 The hexadecimal number system

 To make the task of dealing with the computers binary number system more
manageable the hexadecimal number system is used. The hexadecimal (base
sixteen) number system is a handy shorthand for talking about bits and bytes and
memory addresses.

 In hexadecimal, addresses range from #0000 to #FFFF.

 The number sign (#) is used to tell you that the number is hexadecimal
instead of decimal. This is the notation used in NSC Tiny BASIC; other
notations exist in other literature.

 The hexadecimal number system has more digits than the decimal system. To
give symbols to these additional digits the letters A, B, C, D, E, and F are
used to denote the hexadecimal equivalents of 10, 11, 12, 13, 14, and 15,
respectively.

 Just as in the decimal number system, each hexadecimal digit has a
positional (or place) value. The digit occupying any position is multiplied by
the value of that particular position. These products are then added together
to obtain the value of the number.

 - 50 -

 Hexadecimal position values are expressed as powers of sixteen (rather than
ten as in the decimal system). Positions are numbered from right to left
according to the increasing powers:

| POSITION | POSITION | POSITION | POSITION |
| 3 | 2 | 1 0 |

| 3 | 2 | 1 | 0 |
| 16 | 16 | 16 | 16 |

 The decimal values of the powers of 16 are:

 0 1 2 3
 16 1 16 = 16 16 = 256 16 = 4096

 For example, the number #6A3F should be interpreted as:

 3
 6 x 16 = 24576

 2
 #A (10) x 16 = 2560

 1
 3 x 16 = 48

 0
 + #F (15) x 16 = 15

 #6A3F = 27199

 If we ask the INS 8073, in NSC Tiny BASIC, to print a hexadecimal number
NSC Tiny BASIC will respond with a decimal equivalent.

 Since NSC Tiny BASIC uses two bytes to store a number in any of its
variables (A through Z) the largest number that can be stored is 65535.
However, to be able to handle negative numbers the most significant bit is used
as a sign bit. This means that numbers between #0000 and #7FFF are equivalent
to decimal numbers 0 through 32767 and numbers #8000 through #FFFF are
equivalent to decimal numbers -32768 through -1, respectively.

 - 51 -

 To more graphically illustrate what this means study the hexadecimal and
decimal number circles below:

 #0000
 #FFFF #0001
 #FFFE #0002
 #FFFD #0003
 #FFFC #0004
 #FFFB #0005
 | |
 | |
 | |
 #8005 #7FFB
 #8004 #7FFC
 #8003 #7FFD
 #8002 #7FFE
 #8001 #7FFF
 #8000

 0000
 -1 1
 -2 2
 -3 3
 -4 4
 -5 5
 | |
 | |
 | |
 -32763 32763
 -32764 32764
 -32765 32765
 -32766 32766
 -32767 32767
 -32768

 - 52 -

3.1.4 The AND, OR, NOT OPERATORS

 Now that you have a handle on bits and bytes we can describe in more detail
the logical operators NOT, AND, OR which are extremely useful for the software
control of hardware.

 All of these operations operate on 16 bit words.

 The NOT operator performs a bit complement on the factor following the
operator. A bit complement simply changes a bit from whatever state it is in to
the opposite state.

 EXAMPLE

 A = 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 = #2222 = 8738

 NOT A = 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 = #DDDD = -8739

 The NOT operator is usually used with conditionals to invert the sense of
the condition.

 EXAMPLE

 20 IF A = 15 PR "A IS EQUAL TO 15"
 40 IF NOT(A = 15) PR "A IS NOT EQUAL TO 15"

 Z = 48
 55 D0
 65 Z = Z - 1
 75 UNTIL NOT(B = Z - 48)

 - 53 -

 The AND operator uses two terms just as do add and subtract.

 EXAMPLE

 10 A = Z AND 15
 40 T = C AND D
 45 IF (A AND B) = 0 THEN GOTO 15

 The AND operator does a logical AND on each set of bits according to the
following table:

 1 AND 1 = 1
 1 AND 0 = 0
 0 AND 1 = 0
 0 AND 0 = 0

 Therefore:
 A = #0F0F = 0000 1111 0000 1111
 B = #1234 = 0001 0010 0011 0100
 A AND B = #0204 = 0000 0010 0000 0100

 The AND operator is most useful for getting rid of undesired bits in input
and output routines or for setting desired bits to 0, or in complex conditional
expressions:

 EXAMPLE

 15 A = A AND #FF : REM will force A to be between 0 - 255.
 43 T = C AND #FE : REM will force bit 0 of C to 0.
 97 IF (A = B) AND (C = D) THEN PR "MATCHED"

 The OR operator uses two terms as does AND.

 EXAMPLE

 15 A = B OR #F0
 22 T = (C OR D) + (T OR 1)
 210 UNTIL (B = 0) OR (Z = T)

 - 54 -

 The OR operator does a logical OR on each set of bits according to the
following table:

 1 OR 1 = 1
 1 OR 0 = 1
 0 OR 1 = 1
 0 OR 0 = 0

 Therefore:
 A = #0F0F = 0000 1111 0000 1111
 B = #1234 = 0001 0010 0011 0100
 A or B = #0204 = 0001 1111 0011 1111

 The OR operator is most useful for setting desired bits to 1, or in complex
conditional expressions:

 EXAMPLE

 15 A = A OR 8 : REM sets only bit 3 of A high.
 34 DO : GOSUB 500 : UNTIL (A = 0) OR (A = 12)

3.1.5 MC-1N MEMORY ORGANIZATION

 The MC-1N has 2000 bytes of local memory (RAM). The first 256 bytes are
reserved for Tiny BASIC variables and other house-keeping functions. The
remaining 1792 bytes can be used for programs #1100 to #17FF.

 MC-1N MEMORY MAP

#0000 - #09FF Internal 8073 ROM (2.5K)
#0A00 - #0FFF Not Available to MC-1N
#1000 - #10FF Tiny BASIC Variables
#1100 - #17FF MC-1N Program Space
#1800 - #7FFF Not Available to MC-1N
#8000 - #8FFF Users Program ROM
#9000 - #A7FF Not Available to MC-1N
#A800 - #AFFF Real Time Clock/Calendar
#B000 - #B7FF Not Available to MC-1N
#B800 - #BFFF Programmable Peripheral Interface
#C000 - #FCFF Not Available to MC-1N
#FD00 - #FDFF Baud Rate Select
#FE00 - #FFBF Not Available to MC-1N
#FFC0 - #FFFF Internal 8073 MPU RAM (64 bytes)

 - 55 -

3.2 PARALLEL I/O LINES

 The MC-1N has 24 programmable Input/Output lines available on J2. See
section 3.5 page 66 for more information. These inputs and outputs are
implemented using an 8255 programmable parallel interface chip. Depending on
your applications the PPI can be used for a variety of tasks such as, printer
drivers, display drivers, keyboard inputs, relay drivers, D/A converter inputs,
A/D converter control, etc. The PPI is an extremely versatile microprocessor
I/O device and is beyond the scope of this manual to go into all of its
details. If you would like to explore the PPI capabilities beyond those
specified in this section, refer to the INTEL Component Data Catalog or
"Microcomputer interfacing with the 8255 PPI chip" by Paul F. Goldsbrough,
published by Howard W. Sams Co.

 The PPI occupies four sequential memory locations in the MC-1N:

 #B800 Port A
 #B801 Port B
 #B802 Port C
 #B803 PPI control register

 For most applications the PPI will be used in what is referred to in the
data sheets as mode 0. This being the case, we will limit our treatise on the
PPI to the mode 0 operation

 - 56 -

3.2.1 Configuring the PPI

 The PPI has 24 I/O lines which may be specified as inputs or outputs.
These 24 lines are organized as three groups of 8 lines each called port A, port
B, and port C. The PPI control register is used to define what lines are to be
inputs and what lines are to be outputs. Ports A and B may be specified as all
inputs or all outputs, but, Port C may be specified as all inputs or all outputs
or half inputs and half outputs. These options are set by setting #B803 to the
following:

 ADDRESS DATA PORT A PORT B PORT C PORT C
 LOWER 4 UPPER 4
 BITS BITS

 @#B803 = #80 outputs outputs outputs outputs
 @#B803 = #81 outputs outputs inputs outputs
 @#B803 = #82 outputs inputs outputs outputs
 @#B803 = #83 outputs inputs inputs outputs
 @#B803 = #88 outputs outputs outputs inputs
 @#B803 = #89 outputs outputs inputs inputs
 @#B803 = #8A outputs inputs outputs inputs
 @#B803 = #8B outputs inputs inputs inputs
 @#B803 = #90 inputs outputs outputs outputs
 @#B803 = #91 inputs outputs inputs outputs
 @#B803 = #92 inputs inputs outputs outputs
 @#B803 = #93 inputs inputs inputs outputs
 @#B803 = #98 inputs outputs outputs inputs
 @#B803 = #99 inputs outputs inputs inputs
 @#B803 = #9A inputs inputs outputs inputs
 @#B803 = #9B inputs inputs inputs inputs

3.2.2 PPI Outputting

 Once the PPI is configured for input and output it is a simple matter to
read and write to the I/O lines. See section 3.5 page 66 for more information.
If, for example, port A was configured to be an OUTPUT, you may test it by
connecting a voltmeter to one of the port A pins on connector J2 and typing:

 @#B800 = 0 : REM The voltmeter should read near 0 volts

 @#B800 = 255 : REM The voltmeter should read near 5 volts

 The above statements set all pins on the port A to low then high. If you
only wanted to set bit 0 of port A low then high (pin 4 on J2) then the above
example should be changed to:

 @#B800 = 0

 @#B800 = 1

 - 57 -

 Since the port is now configured and tests correctly, let’s write a simple
program to turn the port A bit 0 on for one second then off for one second
continuously:
 10 A = #B800
 20 @A = 0 : DELAY 1000
 30 @A = 1 : DELAY 1000
 40 GOTO 20

 This program will run forever or until a BREAK key or CONTROL C key is
pressed on the terminal.

 In actual applications each output bit of the PPI may be assigned different
tasks. Also, when you change one of the bots you may not want the other bits to
change. Since the PPI outputs cannot be read back, your program must keep a
storage register with the current output pin states.

 EXAMPLE:

 10 M = 0
 20 PR"PIN 4 = ";:INPUT A
 30 IF A = 0 THEN M = M AND 254 : GOTO 50
 40 M = M OR 1
 50 @#B800 = M
 60 PR"PIN 3 = ";:INPUT A
 70 IF A = 0 THEN M = M AND 253 : GOTO 90
 80 M = M OR 2
 90 @#B800 = M
 100 GOTO 20

 In the above example M is the storage register of the PPI outputs.

 - 58 -

3.2.1 PPI Inputting

 Once a port has been configured for inputting, the input pins may be read
with simple memory reference statements. For instance, if Port A is configured
as an input port then PR @#B800 will print out the decimal value of the eight
input lines on Port A.

 Wire connector J-2 pins 4, 3, 2, 1, etc. to ground (pin 6), then PR @#B800
will print a 0. See section 3.5 page 66 for more information.

 Wire connector J-2 pin 4 to +5vdc (pin 5) leaving the others on ground then
PR @#B800 will print 1.

 Wire a DPST switch with the switch common to connector J-2 pin 4 and the
other two switch terminals to +5vdc and ground, respectively. The following
program will print on the terminal the position of the switch.

 EXAMPLE
 10 A = # B800
 20 IF @A = 0 PR"SWITCH IS OFF" : GOTO 40
 30 PR"SWITCH IS ON "
 40 GOTO 20

 In actual usage many inputs, say eight switches, will be connected to the
input port. If you are only interested in the position of the switch connected
to connector J-2 pin 1 the above program could be written:

 EXAMPLE
 10 A = # B800
 20 IF (@A AND 8) = 0 PR"SWITCH IS OFF" : GOTO 40
 30 PR"SWITCH 1 IS ON "
 40 GOTO 20

 - 59 -

3.3 ADDITIONAL I/O AND INTERRUPTS

3.3.1 Inputs and Outputs using STAT FUNCTION

 The MC-1N has five additional I/O lines available on connector J-1. See
section 3.5 page 66 for more information. These five lines come directly from
the INS 8073 processor chip and may be accessed using the STAT function in Tiny
BASIC.

These are:
 SA SENSE A INPUT J1-1
 SB SENSE B INPUT J1-5
 F1 FLAG 1 OUTPUT J1-2
 F2 FLAG 2 OUTPUT J1-8
 F3 FLAG 3 OUTPUT J1-7

 If a terminal is used, SA and F1 will be occupied with serial I/O. They
may be used for other functions but the circuitry must disable the terminal I/O
to avoid interference.

 On the MC-1N, SB, F2 and F3 are available.

 F2 and F3 can be set and cleared with:
 STAT = STAT AND #0D

 SB may be read with:
 PR STAT AND #20

 - 60 -

3.3.2 INTERRUPTS

 The SA and SB inputs can also be interrupt inputs. Interrupts are used to
cause the microcomputer to stop its current job to be given some information
that could occur at any time. The program can be written to find out what
caused the interrupt and decide what to do next based on the new information.
The program will usually perform some immediate action then continue with what
it was doing before the interrupt occurred.

 This type of action is most useful for alerting the microcomputer, of
events that require action, but that occur on an irregular basis. The program
will not need to continually waste instruction time looking to see if the event
has taken place.

3.3.3 Status Register Bit Assignments

Most significant bit Least significant bit

 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

 | CY/L | OV | SB | SA | F3 | F2 | F1 | IE |

3.3.3.1 Status Register Bit Definitions -

BIT DESCRIPTION

 7 CARRY/LINK (CY/L)

 This bit is set to 1 if a carry occurs from the most significant bit during
some machine language instructions.

 6 OVERFLOW (OV)

 This bit is set if an arithmetic overflow occurs during some machine
language instructions.

 NOTE

 The above two bits may be of no use in an NSC Tiny
 BASIC program since they are machine code status
 bits that may be used one of more times during any
 given BASIC Instruction.

 5 SENSE BIT B (SB)

 This bit is tied to an external connector pin and may be used to sense
external conditions. This is a "read only" bit which is not affected when the
contents of the accumulator are copied into the status register by a STAT
instruction. It is also the second interrupt input and may be examined by the

 - 61 -

"ON" command.

 4 SENSE BIT A (SA)

 This bit is tied to an external connector pin and may be used to sense
external conditions. In addition it acts as the interrupt input when the
INTERRUPT ENABLE (status register bit 3) is set. This bit is a "read only" bit.
It is the first interrupt input and may be examined by the "ON" command. This
bit is used by the NSC Tiny BASIC as the serial input bit from the terminal.

 3 USER FLAG 3 (F3)

 This bit can be set or reset as a control function for external events or
for software status. It is available as an external output from the INS 8073.

 2 USER FLAG 2 (F2)

 This bit can be set or reset as a control function for external events or
for software status. It is available as an external output from the INS 8073.
This bit is used by the NSC Tiny BASIC to control the paper tape reader relay.

 1 USER FLAG 1 (F1)
 This bit can be set or reset as a control function for external events or
for software status. It is available as an external output from the INS 8073.
This bit is used by the NSC Tiny BASIC as the serial output bit (with inverted
data) to the terminal.

 Note:

 The flag 1, 2 and 3 outputs of the status register
 serve as latched flags. They are set to the
 specified state when the contents of the
 accumulator are copied into the status register.
 They are in that state until the contents of the
 status register are modified under program
 control.

 0 INTERRUPT ENABLE FLAG (IE)

 The INS 8073 recognizes the interrupt inputs if this flag is set. This bit
can be set and reset under program control. When set the NSC Tiny BASIC
recognizes external interrupt requests received via the SENSE A or SENSE B
inputs . When reset the NSC Tiny BASIC inhibits the INS 8073 from recognizing
interrupt requests.

 - 62 -

3.4 THE REAL TIME CLOCK/CALENDAR

 The MC-1N microcontroller has an on board real time clock that can be very
useful when operating as a controller. The clock is a National Semiconductor
MM58174 microprocessor bus oriented clock that provides tenths of seconds
through months, including leap year calculation. The clock is crystal
controlled and includes provisions for a very low drain battery backup.

 In the MC-1N the real time clock resides in memory locations #A800 thru
#A80F:

 ADDRESS COUNTER MODE

 #A800 Test only Write only
 #A801 Tenths of seconds Read only
 #A802 Units of seconds Read only
 #A803 Tens of seconds Read only
 #A804 Units of minutes Read or write
 #A805 Tens of minutes Read or write
 #A806 Units of hours Read or write
 #A807 Tens of hours Read or write
 #A808 Units of days Read or write
 #A809 Tens of days Read or write
 #A80A Day of week Read or write
 #A80B Units of months Read or write
 #A80C Tens of months Read or write
 #A80D Years Read or write
 #A80E Start/Stop Read or write
 #A80F Interrupt and Status Read or write

 All counters are four bit counters and utilize the lower four bits of the
data bus (D0-D3).

3.4.1 Initialization

 To have the clock operate predictably, it must be initialized after power
up. For normal operation, the clock circuit must not be in the test mode,
therefore, set @#A800 = 0. Since the time has not been set yet we should make
sure the clock is stopped, therefore set @#A80E = 0. Also, let’s disable the
interrupts, therefore, set @#A80F = 0. Once this is done, the clock may now be
set.

 - 63 -

3.4.2 Setting the clock

 To set the clock, load locations #A804 thru #A80D with the desired data.
For example to set the clock to 3:58pm on February 12, 1983:

 @#A804 = 8 The minutes
 @#A805 = 5
 @#A806 = 5 The hour in 24 hour time (i.e., 3:00pm is 15:00)
 @#A807 = 1
 @#A808 = 2 Day of the month
 @#A809 = 1
 @#A80A = 7 Saturday, the seventh day of the week
 @#A80B = 2 The month
 @#A80C = 0
 @#A80D = 1 Sets leap year correction counter (see below)

 The things to remember when setting the clock are that the time is kept in
24 hour time so all pm times must have 12 hours added to them and 12 am is the 0
hour. The day of the week is your choice, but convention usually assigns Sunday
as the first day of the week. The year setting is really only a leap year
correction counter and should be set according to the following:

 @#A80D = 8 If the year is a leap year
 @#A80D = 4 If the year is a leap year plus one year
 @#A80D = 2 If the year is a leap year plus two years
 @#A80D = 1 If the year is a leap year plus three years

 If interrupts from the clock are to be utilized, the interrupt jumper must
be installed on the MC-1N board (see configuration options below) and your
software must have enabled the INS8073’s interrupts (see additional I/O above).
The MM58174 supports two types of interrupts, single and continuous. These can
be set as follows:

 @#A80F = 0 No interrupt
 @#A80F = 1 Single interrupt after 0.5 seconds
 @#A80F = 2 Single interrupt after 5.0 seconds
 @#A80F = 4 Single interrupt after 60.0 seconds
 @#A80F = 9 Continuous interrupts at 0.5 second intervals
 @#A80F = 10 Continuous interrupts at 5.0 second intervals
 @#A80F = 12 Continuous interrupts at 60.0 second intervals

 In the single interrupt mode, the interrupt must be respecified each time
it is required. In the continuous mode the interrupt will automatically be
respecified each time it is read (see below). All interrupt lines are accurate
to +/- 16.67ms. Single interrupts will usually be set while the clock is
running on an as required basis.

 - 64 -

3.4.3 Starting the clock

 The clock is started by setting @#A80E = 1. The seconds counters will
begin at zero seconds. To stop the clock set @#A80E = 0.

3.4.4 Reading the clock

 To read date/time read the counters at locations #A801 thru #A80C. The
clock chip updates all time counters ten times per second (every tenth second).
If an update had occurred since the last time a counter was read, the chip will
output a 15 to let you know that an update has occurred. NSC Tiny BASIC reads
memory locations to slow to allow reading the clock times without an update
occurring. Also to read in all digits of the date/time will take an elapsed
time of more than a second in Tiny BASIC, so use of the clock to do timing
control of events faster than a few seconds is not practical unless you write a
machine code clock read routine (BASICON has one available in the MC-1N Utility
ROM). In any case, if you read a 15 while reading a location, read it again to
get the correct digit. A typical Tiny BASIC routine to read a digit might look
like:

 150 B=#A805
 155 A=(@B AND 15):IF A=15 A=(@B AND 15):IF A=15 A=(@B AND 15)

 In the above example the clock counter at #A805 (B) is read into variable
A. If A is equal to 15 then the clock is reread. If the second reading of the
clock is still 15 then the clock is reread a third time to make sure it really
is at 15. This indicates that the clock is not initialized and initial times
are not set into the clock. It is possible for any number from 0 to 15 to be
present in some of the counters at power up and are initialized only under
program control. An example routine to read several digits might look like:

 200 FOR I=0 TO 3 : B=#A804+I : GOSUB500 : @(TOP+I)=A : NEXTI
 |
 |
 |
 500 A=(@B AND 15):IF A=15 A=(@B AND 15):IF A=15 A=(@B AND 15)
 510 RETURN

 The above example will read the minutes and hours and place them into four
locations starting at TOP. To insure that an update, that might affect the
minutes or hours, has not occurred while reading them, the times should be read
at least twice and compared. If they don’t compare, read a third time again and
compare with the second read times. This procedure must be continued until two
consecutive readings compare.

 An illustration may serve to further clarify any misunderstanding. The
time registers are read in sequence low order (units) minutes, high order (tens)
minutes, low order (units) hours, high order (tens) hours. If on the first
reading the time shows 4:59 and the second reading is 4:00 the third reading is
4:00. During the first reading the low order register hours register was
updated while reading the minutes register giving a very erroneous time. Other
sequences of register readings will require similar checking.

 If you are using the interrupt timers in the MM58174, then upon interrupt
the first thing you need to do is to read the clock status register. This will
reset the interrupt output from the clock chip

 - 65 -

3.5 MC-1N OPTIONS AND CONFIGURATION

 JUMPERS

 | E1 Clock interrupt jumper
 | E2 2732 EPROM
 E1- + | E3 2716 EPROM
 \ + | E4 Baud rate select
 E4- + | E5 Baud rate select
 \ + |
 E5- + |
 \ + | Baud Rate Jumpers
 E2- + |
 + | E4 E5
 E3- + | 110 out out
 | 300 out in
 | 1200 in out
 MC-1N O | 4800 in in

 || CONNECTOR J1
 ||
 || J1 J1-1 RS232 receive J1-2 RS232 transmit
 ||--+ J1-3 -5V output J1-4 Keep-alive input
 1||..|2 J1-5 SB input J1-6 Reset input
 3||..|4 J1-7 F3 output J1-8 F2 output
 5||..|6 J1-9 Ground J1-10 +5v power input
 7||..|8
 9||..|10
 ||--+ CONNECTOR J2
 ||
 || J1-1 PA3 J2-2 PA2
 || J1-3 PA1 J2-4 PA0
 || J2 J1-5 +5v J2-6 Ground
 ||--+ J1-7 PC7 J2-8 PA4
 1||..|2 J1-9 PC6 J2-10 PA5
 3||..|4 J1-11 PC5 J2-12 PA6
 5||..|6 J1-13 PC4 J2-14 PA7
 7||..|8 J1-15 PC1 J2-16 PC0
 9||..|10 J1-17 PC2 J2-18 PB7
 11||..|12 J1-19 PC3 J2-20 PB6
 13||..|14 J1-21 PB0 J2-22 PB5
 15||..|16 J1-23 PB1 J2-24 PB4
 17||..|18 J1-25 PB2 J2-26 PB3
 19||..|20
 21||..|22
 23||..|24
 25||..|26
 ||--+
 ||
 ||
 ||

 - 66 -

3.6 APPLICATIONS

 - Burglar Alarm or Security System Controller

 - Solar Collector System Controller

 - Laboratory Experiment Controller

 - Interactive Information Display Controller

 - Relay Contact Life Tester

 - Motor Life Tester

 - Battery Discharge Life Tester

 - Special Purpose RS-232 Serial to Parallel Converter

 - Programmable Battery Backed Timer

 - 67 -

 APPENDIX A

 APPENDIX

A.1 ERROR CODE SUMMARY

A.1.1 NSC Tiny BASIC Error Messages

 1. Out of memory
 2. Statement used improperly
 3. Unexpected character (after illegal statement)
 4. Syntax Error
 5. Value (format) error
 6. Ending quote missing from string
 7. GO target line doesn’t exist
 8. RETURN without previous GOSUB
 9. Expression or FOR-NEXT or DO-UNTIL nested too deeply
 10. NEXT without previous matching FOR
 11. UNTIL without previous DO
 12. Division by zero

 - 68 -

A.2 ASCII CODES

 ASCII to DECIMAL - HEXADECIMAL - OCTAL CONVERSION TABLE

--
 NUMBER BASE | | NUMBER BASE | | NUMBER BASE | | NUMBER BASE |
-------------- -------------- --------------- ----------------
 10 | 16 | 8 | CHR | 10 | 16 | 8 |CHR| 10 | 16 | 8 |CHR| 10 | 16 | 8 |CHR
--
 00 | 00 | 00 | NUL] 32 | 20 | 40 |] 64 | 40 | 100 | @] 96 | 60 | 140 | ‘
 01 | 01 | 01 | SOH] 33 | 21 | 41 | !] 65 | 41 | 101 | A] 97 | 61 | 141 | a
 02 | 02 | 02 | STX] 34 | 22 | 42 | "] 66 | 42 | 102 | B] 98 | 62 | 142 | b
 03 | 03 | 03 | ETX] 35 | 23 | 43 | #] 67 | 43 | 103 | C] 99 | 63 | 143 | c
 04 | 04 | 04 | EOT] 36 | 24 | 44 | $] 68 | 44 | 104 | D] 100 | 64 | 144 | d
 05 | 05 | 05 | ENQ] 37 | 25 | 45 | %] 69 | 45 | 105 | E] 101 | 65 | 145 | e
 06 | 06 | 06 | ACK] 38 | 26 | 46 | &] 70 | 46 | 106 | F] 102 | 66 | 146 | f
 07 | 07 | 07 | BEL] 39 | 27 | 47 | ’] 71 | 47 | 107 | G] 103 | 67 | 147 | g
 08 | 08 | 10 | BS] 40 | 28 | 50 | (] 72 | 48 | 110 | H] 104 | 68 | 150 | h
 09 | 09 | 11 | HT] 41 | 29 | 51 |)] 73 | 49 | 111 | I] 105 | 69 | 151 | i
 10 | 0A | 12 | LF] 42 | 2A | 52 | *] 74 | 4A | 112 | J] 106 | 6A | 152 | j
 11 | 0B | 13 | VT] 43 | 2B | 53 | +] 75 | 4B | 113 | K] 107 | 6B | 153 | k
 12 | 0C | 14 | FF] 44 | 2C | 54 | ,] 76 | 4C | 114 | L] 108 | 6C | 154 | l
 13 | 0D | 15 | CR] 45 | 2D | 55 | -] 77 | 4D | 115 | M] 109 | 6D | 155 | m
 14 | 0E | 16 | SO] 46 | 2E | 56 | .] 78 | 4E | 116 | N] 110 | 6E | 156 | n
 15 | 0F | 17 | SI] 47 | 2F | 57 | /] 79 | 4F | 117 | O] 111 | 6F | 157 | o
 16 | 10 | 20 | DLE] 48 | 30 | 60 | 0] 80 | 50 | 120 | P] 112 | 70 | 160 | p
 17 | 11 | 21 | DC1] 49 | 31 | 61 | 1] 81 | 51 | 121 | Q] 113 | 71 | 161 | q
 18 | 12 | 22 | DC2] 50 | 32 | 62 | 2] 82 | 52 | 122 | R] 114 | 72 | 162 | r
 19 | 13 | 23 | DC3] 51 | 33 | 63 | 3] 83 | 53 | 123 | S] 115 | 73 | 163 | s
 20 | 14 | 24 | DC4] 52 | 34 | 64 | 4] 84 | 54 | 124 | T] 116 | 74 | 164 | t
 21 | 15 | 25 | NAK] 53 | 35 | 65 | 5] 85 | 55 | 125 | U] 117 | 75 | 165 | u
 22 | 16 | 26 | SYN] 54 | 36 | 66 | 6] 86 | 56 | 126 | V] 118 | 76 | 166 | v
 23 | 17 | 27 | ETB] 55 | 37 | 67 | 7] 87 | 57 | 127 | W] 119 | 77 | 167 | w
 24 | 18 | 30 | CAN] 56 | 38 | 70 | 8] 88 | 58 | 130 | X] 120 | 78 | 170 | x
 25 | 19 | 31 | EM] 57 | 39 | 71 | 9] 89 | 59 | 131 | Y] 121 | 79 | 171 | y
 26 | 1A | 32 | SUB] 58 | 3A | 72 | :] 90 | 5A | 132 | Z] 122 | 7A | 172 | z
 27 | 1B | 33 | ESC] 59 | 3B | 73 | ;] 91 | 5B | 133 | [] 123 | 7B | 173 | {
 28 | 1C | 34 | FS] 60 | 3C | 74 | <] 92 | 5C | 134 | \] 124 | 7C | 174 | |
 29 | 1D | 35 | GS] 61 | 3D | 75 | =] 93 | 5D | 135 |]] 125 | 7D | 175 | }
 30 | 1E | 36 | RS] 62 | 3E | 76 | >] 94 | 5E | 136 | ^] 126 | 7E | 176 | ˜
 31 | 1F | 37 | VS] 63 | 3F | 77 | ?] 95 | 5F | 137 | _] 127 | 7F | 177 |del

--
 10 | 16 | 8 | CHR | 10 | 16 | 8 |CHR| 10 | 16 | 8 |CHR| 10 | 16 | 8 |CHR
-------------- -------------- --------------- ----------------
 NUMBER BASE | | NUMBER BASE | | NUMBER BASE | | NUMBER BASE |
--

 - 69 -

A.3 LANGUAGE SUMMARY

A.3.1 Command Summary

 CONT:
 LIST [expr]: Lists the current program, with line start option.
 NEW expr: Establishes a new begin of program address.
 NEW: Sets the end of program pointer equal to the begin
 of program pointer.
 RUN: Runs the current program.

A.3.2 Statement Summary

 CLEAR: Sets all variables to 0,
 disables interrupts, and
 resets all stacks.
 DELAY expr: Loop and do nothing for <expr>
 units of time. 1-1040
 milliseconds, 0=1040 milliseconds.
 DO: Begin of loop statement, may be
 nested eight deep.
 FOR var=expr TO expr [STEP expr]: FOR loop STEP assumed to be one,
 may be nested four deep.
 GOSUB expr: Execute subroutine at statement
 <expr>, may be nested eight
 deep.
 GO[TO] expr: Jump to program statement
 <expr>.
 IF expr [THEN] statements: Statements are executed if
 <expr> is true (non zero).
 INPUT $factor: Put string from terminal into
 RAM beginning at address
 <factor>.
 INPUT var: Put value from terminal into
 <var>.
 [LET]$factor=$factor: Copies one memory location to
 another.
 [LET]$factor="string": Address <factor> is start of
 "string" in RAM.
 [LET]@factor=expr: Sets memory location pointed to
 by <factor> equal to <expr>.
 [LET]STAT=expr: Sets status register to value of
 <expr>.
 [LET]var=expr: Assigns expression value to
 <var>.
 LINK expr: Gosub statement for calling
 microcode subroutines.
 NEXT var: FOR loop termination.
 ON <1 or 2> expr: Interrupt processing statement.
 PRINT expr: Prints the value of <expr>.
 PRINT $factor: Prints the "string" beginning at
 address <factor>.
 PRINT "string": Prints the "string".
 REM [string]: Remark, for comments.
 RETURN: Termination for GOSUB.
 STOP: Cease program execution.
 UNTIL expr: DO loop termination.

 - 70 -

A.3.3 Operator Summary

 Arithmetic operators:
 addition +
 subtraction -
 multiplication *
 division /

 Relational operators:
 less than <
 greater than >
 equal to =
 not equal to <>
 less than or equal to <=
 greater than or equal to >=

 Logical operators:
 AND
 OR
 NOT

 Special Symbols:
 : Used to separate line statements.
 ; Terminates a PRINT statement without a carriage
 return or line feed.
 $ Signifies that the following variable or expression
 is the address of a string.
 @ Signifies that the following variable or expression
 is the address of a byte.
 # Signifies that the following number is in
 hexadecimal.
 <control C> Causes program to halt at end of current basic
 statement.
 <control H> Backspace.
 <BREAK> Halts BASIC program immediately.

A.3.4 Function Summary

 INC (c) DEC (x): Non-interruptible increment or decrement of a
 memory location.
 MOD(x,y): Remainder of x divided by y.
 RND(x,y): Random number generator between x and y inclusive.
 STAT: The status register contents.
 TOP: First available RAM memory byte after end of
 program byte.

 - 71 -

A.4 SYNTAX DIAGRAMS (GRAMMAR)

 FACTOR

 ----->--------------->| UNSIGNED INTEGER |----------->-------->
 | ------------------ ^
 | (1) |
 | -> SP -> |
 | | | ------------------ |
 ->-------->--->| VARIABLE |----------->
 | ------------------ |
 | |
 | ------------------ |
 --------> (-->| EXPRESSION |->) ------>
 | ------------------ |
 | |
 | ------------------ |
 ------> NOT -->| FACTOR |----------->
 | ------------------ |
 | |
 | ------------------ |
 --------> (-->| CONDITION |->) ------>
 | ------------------ |
 | |
 | ------------------ |
 -------------->| FUNCTION |----------->
 | ------------------ |
 | |
 | ------------------ |
 -------------->| MEMORY VARIABLE |----------->

 - 72 -

 FUNCTION

--> -----------> STAT ---> -->
 | ^
 | |
 -----------> TOP -->
 | ^
 | ------------ ------------ |
 -----------> MOD --> (-->| EXPRESSION |--> , -->| EXPRESSION |-->) -->
 | ------------ ------------ ^
 | |
 | ------------ ------------ |
 -----------> RND --> (-->| EXPRESSION |--> , -->| EXPRESSION |-->) -->
 | ------------ ------------ ^
 -----------> INC --> (-->| EXPRESSION |-->) ------------------------->
 | ------------ ^
 | (1) |
 --> SP -> |
 | | ------------ |
 -------->--> DEC --> (-->| EXPRESSION |-->) ------------------------->

 UNSIGNED INTEGER

 --> # -->
 | |
 -------->--------->---->-----> DIGIT -->----------->
 | |
 <--------------

 CONDITION

----->| EXPRESSION |-->-->--------->
 ------------ | ^
 | |
 -->--->--->--->---> |
 | | | | | | |
 = > < >= <= <> |
 | | | | | | ------------ |
 -->--->--->--->--->--->| EXPRESSION |-->

 - 73 -

 EXPRESSION

 <------<------<------<-------
 | ^ ^ ^ ^
 ------ | | | |
 | TERM | + - AND OR
 ------ ^ ^ ^ ^
 | | | | | |
 | | | <-- |
 | | | | |(1) |
 | | | | SP |
 | | | | | |
 --> + --> | | | --> |
 | | ------ | | | | |
 ---->------------->| TERM |---->------>------>------>-------->------->
 | | ------
 --> - -->

 TERM

 ----->| FACTOR |---->---------------->------>--------->
 -------- ^ | |
 | * /
 | -------- | |
 <--| FACTOR |<---<-----

 - 74 -

 FACTOR

 ----->| MEMORY REFERENCE |--------------------->
 ^ ------------------ |
 | |
 | |
 -----> STAT ----------------------------------->
 ^ |
 | |
 -----> TOP ------------------------------------>
 ^ |
 | (1) |
 | --> SP --> |
 | | | ------------ |
 ---->---------->----> DEC --->| EXPRESSION |--->
 ^ ------------ |
 | |
 | ------------------ |
 ---->----->| UNSIGNED INTEGER |----------------------> ------>
 | ------------------ ^
 | |
 | ---------- |
 ---->| VARIABLE |------------------------------>
 | ---------- |
 | |
 | ------------ |
 ----> INC ---> (--->| EXPRESSION |--->) ----->
 | ------------ |
 | |
 | ------------ |
 ----> RND ---> (--->| EXPRESSION |--->) ----->
 | ------------ |
 | |
 | ------------ |
 ----> MOD ---> (--->| EXPRESSION |--->) ----->
 | ------------ |
 | |
 | ------------ |
 ----> (--->| EXPRESSION |--->) -------------->
 | ------------ |
 | |
 | -------- |
 ----> NOT --->| FACTOR |----------------------->
 | -------- |
 | |
 | ----------- |
 ----> (--->| CONDITION |--->) --------------->

 - 75 -

 VARIABLE

 ---------->| LETTER|----------->

 -----> @ --->| EXPRESSION |---->

 STRING VARIABLE

 -----> $ --->| EXPRESSION |---->

 STRING CONSTANT

 -----> " --->---->| CHARACTER |--->----> " ----->
 ^ ----------- |
 | |
 <--------------------

 STATEMENT LINE

 --> REM -->--->| CHAR |-->---> CR -->
 ^ | ------ | |
 | <------------ |
 | |
 ------------- | ----------- |
 ----->| LINE NUMBER |-->--->| STATEMENT |---->-----> CR ----->------>
 ------------- ^ ----------- |
 | |
 <------ : <----------

 - 76 -

 STATEMENT

 -->| STRING CONSTANT |-->
 ^ ----------------- |
 | |
 ------------------ | ----------------- |
 -->| STRING VARIABLE |--> = -->--->| STRING VARIABLE |-->--->
 ^ ------------------ ----------------- |
 | |
 | ------------------ |
 -->| MEMORY REFERENCE |-------> |
 ^ ------------------ | |
 | | |
 <---------- | |
 | | |
 ------------> | |
 | | ---------- | ------------ |
 -->---> LET -->--->| VARIABLE |--->----> = --->| EXPRESSION |---->
 ^ | ^ ---------- ------------ |
 | | (1) |
 | ---> SP ----> |
 | |
 | -------------> |
 | ----------- | | ----------- |
 ---> IF --->| CONDITION |--->----> THEN --->---->| STATEMENT |----->
 ^ ----------- ----------- |
 | |
 | ------------------ |
 | -->| MEMORY REFERENCE |--> |
 | (1) ^ ------------------ | |
 --> SP --> | ------- |
 | | | ---------- | ------------ |
 --------->---> FOR -->--->| VARIABLE |-->--> = -->| EXPRESSION |-- |
 ^ ---------- ------------ | |
 | -- |
 | | ------------ ------------ |
 | --> TO -->| EXPRESSION |-->---> STEP -->| EXPRESSION |-->------>
 | ------------ | ------------ ^ |
 | | | |
 | ------------------------------> |
 | |

 - 77 -

 ^ ^
 | |
 | -----------------> |
 | ^ | |
 | | ---------- | |
 ---------> NEXT -->--->| VARIABLE |-->-----------------------------
 ^ ---------- |
 | |
 | ----> GO ----> |
 | ^ | |
 | | | ------------ |
 ------->----> GOTO --->---->| EXPRESSION |------------------------->
 ^ ------------ |
 | |
 | (2) ------------ |
 ---> ---------> GOSUB ---------->| EXPRESSION |-------------------------> -->
 | ------------ |
 | |
 | (2) |
 -------------------------> RETURN --------------------------------->
 | ^
 | |
 | (1) |
 | --> SP --> |
 | | | (3) |
 ------->---------->----> DO --------------------------------------->
 | ^
 | (3) ----------- |
 ----------> UNTIL ------>| CONDITION |----------------------------->
 | ----------- ^
 | |
 ------------------> CLEAR --->
 | ^
 | (1) |
 | --> SP --> |
 | | | ------------ |
 ------->---------->----> DELAY ------>| EXPRESSION |--------------->
 | ------------ ^
 | |
 | ----------------- |
 | --->| STRING VARIABLE |--> |
 | ^ ----------------- | |
 | | | |
 | | ---------- | |
 ---------> INPUT --->---->| VARIABLE |--------->------------------->
 | ^ ---------- | ^
 | | | |
 | <------- , --------------- |
 | |

 - 78 -

 | ^
 | ----------------- |
 | --->| STRING CONSTANT |---> |
 | ^ ----------------- | |
 | | | |
 | | ----------------- | |
 | --->| STRING VARIABLE |---> |
 | ^ ----------------- | |
 ---> PR ----> | | --> ; --> |
 | | | ------------ | | | |
 --> PRINT -->---->---->| EXPRESSION |-------->---->--------->------>
 | ^ ------------ | ^
 | | | |
 | <-------- , <-------------- |
 | |
 | ------------ |
 ---------------> LINK --->| EXPRESSION |--------------------------->
 | ------------ ^
 | |
 | ------------ ------------ |
 -------> ON --->| EXPRESSION |---> , --->| EXPRESSION |------------>
 | ------------ ------------ ^
 | |
 ----------------------------> STOP ---------------------------------

(1) Normally SPACES are not required except when the first letter a KEYWORD
following a HEX number is either "A", "B", "C", "D", "E" or "F".

Example 10

(2) Each GOSUB must have a matching RETURN. (3) Each DO must have a matching
UNTIL. (4) Each FOR must have a matching NEXT (STEP is optional).

 - 79 -

